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Abstract

When a child first begins to acquire a lexicon, the sources of
word-meanings must be available from the situational context.
However, it has been argued that the situational availability of
the meanings of relational terms, such as verbs, is lower than
that of whole-object labels, such as nouns. In this paper, we
present a corpus of child-directed language, paired with situ-
ational descriptions, that enables us to explore the situational
availability of word-meanings using a computational learner.

Keywords: word learning; relational meaning; corpus devel-
opment; computational modeling

Introduction

However the lexical acquisition process in infants develops
beyond the earliest stages, the seeds of the first word mean-
ings must be found in the immediate situational context of
early linguistic interaction (Gleitman, 1990). Bootstrapping
these early meanings across a variety of situations, so-called
cross-situational learning (Akhtar & Montague, 1999), is one
of the early cognitive tasks that children need to perform.
For cross-situational learning to work, the situational contexts
have to contain information that can be extracted and used to
determine what the caregiver is likely referring to. However,
relatively little is known about the information actually con-
tained in situational contexts.

In this paper, we present a corpus of child-directed lan-
guage in which the situational context, as found in the accom-
panying video material, is described in a precise, formalized
manner. Not only have the basic-level categories of objects
been coded, but also some of their properties and the observ-
able relations among agents and objects. This annotated cor-
pus enables us to explore the situational availability of these
various sources of meaning using computational modeling
techniques. As such, we demonstrate the use of computa-
tional models as a methodological tool to gain insight the in-
formation that children have available in their natural learn-
ing environment, and that can contribute to cross-situational
learning of word meaning.

The process of cross-situational learning has been studied
using a multitude of methodologies, each with its limitations.
Experimental set-ups must trade off control of the stimuli
with the naturalism of the interaction, and thus typically un-
derestimate the complexity of the situations caregiver—child
interactions normally take place in (as Medina, Snedeker,
Trueswell, and Gleitman (2011) recently noted again). Some
computational studies use child-directed language from tran-
scribed child language corpora, which require the researchers
to automatically enrich the corpora with artificial meaning
representations (Fazly, Alishahi, & Stevenson, 2010).
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Interest has grown in the use of multimodal material for
computational studies of word-meaning acquisition, since it
contains language embedded in a video of the situation of
its use. There have been experiments with virtual environ-
ments (Fleischman & Roy, 2005), natural environments in
which participants were asked to label objects and actions
(Yu & Ballard, 2003; Roy & Pentland, 2002), and natural
caregiver—child interaction (Roy et al., 2006; Frank, Good-
man, & Tenenbaum, 2009). Despite the greater potential for
naturalistic data, these corpora also suffer from limitations.
First, some only code whole-object labels, thus restricting
themselves to the meaning of one sort of words, viz. nouns
(Roy et al., 2006; Frank et al., 2009). In others, the language
is not child-directed (Fleischman & Roy, 2005; Yu & Bal-
lard, 2003), or the language and situation are unrealistically
temporally aligned (Yu & Ballard, 2003). In this paper, we
also overcome the above limitations by developing a corpus
of child-directed language paired with a precise description
of the situational context. Unlike other corpora, the restric-
tion of our corpus to a particular structured activity allows us
to precisely describe situational aspects that are relevant to
the meanings of various sorts of content words, although the
resulting corpus is necessarily small.

One topic we explore in detail is the extent to which words
with observable relational meanings (i.e., physical actions
and spatial relations) can be bootstrapped from cross-situa-
tional learning. As Gentner (1978) argues, mapping words
to relations is more difficult than to objects because relations
can typically be construed in more ways. Gleitman (1990)
shows how even observable relations are often not present
at the time of uttering a word referring to them. This paper
shows, using a different methodology, that relational terms
are indeed harder to glean from the situational context.

A Situated Corpus of Child-Directed Language

Our goal is to construct a corpus that contains situational in-
formation that is available to a learner and that can be used in
learning the meaning of a variety of content words. For devel-
oping such a corpus, there are two requirements. At a min-
imum, in very early word learning at least, we assume that
the information that contributes to a word’s meaning must be
situationally available—that is, the information must be re-
flected in the situation that is perceivable at or near the time
that the word is uttered. But it must also be the case that
the learner can process this information and understands its
relevance to the interaction with an interlocutor—i.e., the in-
formation must be cognitively available as well.

In recent work on coding the available whole objects in
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video data paired with child-directed language (Roy et al.,
2006; Frank et al., 2009), generally only situational availabil-
ity need be considered, because the cognitive availability of
the objects is implicitly assumed. Turning to relational terms,
as we do here, we must explicitly argue that the appropri-
ate meanings are cognitively available, because of the evi-
dence that gleaning the appropriate relational meanings from
a situation is more difficult (cf., Gentner, 1978). Here we as-
sume that, although child—caregiver interactions take place in
the complex world of everyday life, cognitive availability of
meanings for the child is eased (again, early on) because of
the highly-structured nature of such situations, along with the
joint attention caregivers and children share for their objects,
relations, goals and consequences, which function to nar-
row down the set of meanings communicated (cf., Tomasello,
2003). Thus we focus the annotation on those meanings we
argue to be cognitively available to the child, which are not all
the objects and relations in the situation, but only the subset
that pertains to the current activity.

The result is a corpus that provides information on both
the situationally and cognitively available objects, properties
of objects, and relations between objects. These annotations
rely on relatively lean assumptions about the cognitive avail-
ability of this information. To the best of our knowledge, this
is the first corpus that pairs observed objects, properties and
relations with spontaneously produced language. As such
annotation is costly, the corpus is necessarily small. It can,
however, give us insight into the availability of the sources of
lexical meaning in the situational context, and the problems
a lack of availability may bring about. In that respect this
small but naturalistic corpus complements earlier annotated
corpora in enabling us to explore what is and is not available
at the time some word is uttered.

The source of our material is a collection of 131 videotaped
dyadic interactions (recorded for other purposes) between
Dutch-speaking mothers and their 16-month-old daughters,
containing activities such as playing games and eating. In the
videos, each dyad played a game of putting variously-shaped
blocks in a bucket with holes of matching shapes in the lid . A
set of 32 block games (152 minutes of video) was selected for
our annotation. The first author (a native speaker of Dutch)
transcribed all speech according to CHAT-guidelines', and
two assistants coded the video data for the objects, properties
and relations in the situations. The transcriptions contained
7842 word tokens (480 types) in 2492 utterances. The lan-
guage mostly refers to aspects of the game.

The situational coding was done according to guide-
lines developed by the first author. As the situation con-
sists of just one type of activity (playing the game), the
set of objects, properties and relations is relatively lim-
ited. The most common objects are the bucket, 1id,
blocks, holes and the two participants, mother and child.
The feature color={red, green, yellow,blue} was coded
for the blocks and the feature shape={square,round,

! Available at http://childes.psy.cmu.edu/manuals/CHAT.pdf

Table 1: Coded relations. Parentheses denote optionality. Ag
= Agent, Pa = Patient, In = Instrument, Re = Recipient, So =
Source, Go = Goals, Fi = Figure, Gr = Ground

roles
Ag, Pa, (In)
Ag, Pa, Re, (In)

type name

action grab, letgo,hit
action point, show
action move, force Ag, Pa, So, Go, (In)
action position Ag, Pa, Gr, (In)
spatial in,on,off,out,at,near Fi, Gr

spatial match, mismatch Fi, Gr

triangular, star} for blocks and holes. The relations and
their roles are in Table 1.

For every three-second interval of video, all coder-
observed relations, their associated objects and their proper-
ties were coded.2 The actions (first four rows of Table 1) de-
note simple manual behavior, which we assume children can
recognize (Baillargeon & Wang, 2002). The spatial relations
reflect basic categories of containment and support (in, on)
and their negation (out, of £), as well as two relations denot-
ing non-containment and non-support contact (at) and near-
ness (near). Understanding basic spatial relations precedes
the onset of meaning acquisition and can thus be assumed to
be in place (Needham & Baillargeon, 1993; Hespos & Bail-
largeon, 2001), although many specifics may be language-
specific (Choi, 2006).3 The match or mismatch with a hole
was furthermore inferred from these relations. Spatial rela-
tions were deemed salient if a change in the relation occurred
(e.g.,if ablock was the Figure of an in-relation in the current
interval, when it was not in the previous interval).

The coding procedure was evaluated for inter- and intra-
coder agreement (Carletta, 1996). All relations were coded
reliably both within and between coders (Cohen’s x > 0.8),
except position (intercoder: K = 0.51, intracoder: K =
0.47). When the coders disagreed, the first author decided the
annotation. A sample of the resulting data is given in Table 2.

The Computational Model

We use the probabilistic alignment-based word learning
model of Fazly et al. (2010), which has been shown to per-
form well using naturalistic data. Using a computational
model, we can manipulate input, and doing so, explore the
situational and cognitive availability of information, as well
as how changes in the input affect learning (Experiment 2).
The model incrementally takes as input a pair of an utteran-
ce (a set of words) and a situation (a set of primitive mean-
ings). The learning algorithm has two phases. In the align-
ment phase, the words and meanings in the input are prob-

2Using ELAN (Brugman & Russel, 2004).

3Ideally, one would encode the range of construals of a situation,
including ‘tightness-of-fit’. As a first attempt at relational coding
of situations, we opted for convenient, yet widely known, universal
notions like ‘containment’ and ‘support’.
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Table 2: A sample of the dataset. The dash-separated abbreviations denote blocks and holes and their properties, where for
blocks the order is b-{red,green,blue,yellow }-{round,star,square,triangular}, and for holes ho-{round,star,square,triangular}

time  type coding/transcription
OmOs situation <nothing happens>
utterance een. nou jij een.
translation one. now you one. “One. Now you try one.”
Om3s situation position(mother, toy, on(toy, floor)) grab(child, b-ye-tr)
move(child, b-ye-tr, on(b-ye-tr, floor), near(b-ye-tr, ho-ro)), mismatch(b-ye-tr, ho-ro)
utterance nee daar.
translation no there. “No, there.”
Omo6s situation point(mother, ho-tr, child) position(child, b-ye-tr, near(b-ye-tr, ho-ro)) mismatch(b-ye-tr, ho-ro)
utterance nee lieverd hier past ie niet.
translation no sweetie here fits he not. “No sweetie, it won’t fit in here.”

abilistically mapped to each other; this process is guided by
the conditional probabilities of the meanings given the words
(“the learned meanings”). Second, in the update phase the
obtained alignments are used to update the word—meaning as-
sociations by adding the alignment score to the association.
The word—-meaning associations, next, are used to calculate
the learned meanings, which are then used in the alignment
phase of the next input. These probabilities are based on
the association mass a meaning has for a word, relative to
all other meanings associated with that word. For a formal
explanation, we refer the reader to Fazly et al. (2010).

Experiment 1: Exploring the Corpus

Using the computational model and the corpus, we aim to
gain insight into questions such as: what kind of and how
much information is derivable from the situational contexts?
And is the information equally valuable for different kinds
of words (relational words like verbs and prepositions, and
non-relational words like adjectives and nouns)?

Running the Model

A set of each utterance’s lemmatized word forms is used as
the linguistic input. As the model takes a set of primitive
meanings as the other part of its input, we considered all con-
tent elements from the structured meaning annotation of the
interval containing the start of the utterance as the set of situ-
ation primitives. An example of an input item is:

Utterance: {nee lieverd hier passen hij niet }

Situation: { point, mother, hole, triangular, child,
position, block, yellow, near, round, mismatch }

We set the two smoothing parameters of the model to re-
flect the size of the lexicon, as in Fazly et al. (2010).
Evaluation

We need to understand how the model learns various types
of words that refer to aspects of the situational context. To

Table 3: A sample of the lexicon of target words

type examples
action duwen = force, halen = {move, off, out}

spatial in=1in, af = off, dicht = {1id, on, bucket}
object gat = hole, emmer = bucket
property  rood = red, ster = star

this end we need some sort of gold standard, as well as some
measure of how well the model approximates this standard.

Many words in the utterances have no semantic representa-
tion in the coded situations (articles, modals, discourse parti-
cles). As we cannot expect the model to learn anything about
them, we do not consider them in our evaluation. This leaves
us with a small subset of lemmas (n = 41) that do refer to
possible aspects of the situation. These are verbs of manip-
ulation (e.g., pakken ‘grab’) and placing (e.g., stoppen ‘put
into’), spatial relations (e.g., op, ‘on’), object labels (e.g., blok
‘block’) and properties (vierkant ‘square’). As some words
have multiple meanings (sfoppen meaning put and in), we
have to determine which ser of meanings should be associ-
ated with each word. Table 3 gives a sample of words and
their relevant gold-standard (true) meanings.

We evaluate the learned meanings using two measures.
First, we look at the summed meaning probabilities over the
set of true meanings (Summed Conditional Probability or
SCP). This measure tells us what proportion of the proba-
bility mass is correctly assigned.

scp = Y

fetrue meanings(w)

p(flw) (1)

Second, we look at how high the true meanings are ranked
among all learned meanings, and do so using Average Preci-
sion (AP), calculated as follows:

AP = Z P(k)Ar(k) )
k=1
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Figure 1: Development of the lexicon’s mean SCP and AP
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where k is the rank, n the total number of ranks, P(k) is the
number of true meanings found up to and including &, divided
by the number of meanings found up to and including k, and
Ar(k) is the change in recall between k — 1 and k, which is the
number of true meanings found at k divided by the total num-
ber of true meanings (which is zero in case no true meanings
are found at rank k). This tells us whether the true meanings
are more or less prominent than the irrelevant ones.

Results

Table 4 presents the global results, binned per meaning type
(properties, objects labels, spatial relations, and actions). We
can see that the meanings of non-relational word meanings
are ranked higher than those of relational word meanings
(compare AP = 0.81 and AP = 0.25 for properties and object
labels, with AP = 0.19 and AP = 0.15 for spatial relations and
action labels), although SCP does not differ much between
the categories. In general, the probability distributions of the
learned meanings do not have very strong peaks: the highest
ranking meanings rarely have a learned meaning probability
of more than 0.20. Nevertheless, with 78 primitive meanings,
the model does learn well beyond a baseline of % =0.013.
Looking at the development of the SCP and AP values over
time (Fig. 1), we see strikingly little development in the SCP,
whereas the AP rises for a time, then shows a slight decline.
Splitting the developmental curves out over some of the
words (Fig. 2), we see that the words are learned rather hete-
rogeneously. Looking at the AP first, some words are ac-
quired instantly, with AP =1 (i.e., the correct meaning rank-
ing first) from early on (groen and rond), others gradually

Table 4: Results of Experiment 1

property object spatial action total
SCP  0.10 0.05 0.09 0.07 0.08
AP  0.81 0.25 0.19 0.15 0.31

Figure 2: Development of SCP & AP over time for 9 words

approach AP = 1 (gat), while for most words, the true mean-
ings remain low ranked. There is, however, a development to-
wards a higher AP for many of these words, except for halen
and uit. The SCP remains low in all cases, even when the true
meaning is ranked first (as in groen and rond), although note
that for several words there is some improvement in SCP over
time. Recall that the model has only seen 2492 utterances at
this point, and that more data may increase the SCP further.

Discussion

In this experiment, the model does not learn most words well.
One potential reason is the small data set, representing only
three hours of interaction. We observe that many develop-
mental curves seem not to have reached their asymptotes yet,
suggesting that further learning could occur with more data.
We also, admittedly, have the model discard valuable infor-
mation from the data. Both the linguistic structure (syntax)
and the semantic structure (predicate-argument relations) are
currently ignored by the model but could be useful in creating
the mapping.

In addition, the highly structured and restricted nature of
the data, which we expected to help by focusing the learn-
ing, may actually be hindering performance. We observe that
some words have a very high ranking for their true mean-
ings (high AP), yet have low learned probability mass (low
SCP). (For example, see the words groen and rond in Fig-
ure 2.) On the one hand, the structured and restricted nature
of the blocks game entails that a word’s true meaning often
consistently appears with it. On the other hand, however, the
limited nature of the interactions in the data also entails that
many irrelevant meanings consistently appear with the word.
For example, the object of a grab action is almost always a
block, so that the learner cannot rule out block as a possible
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meaning of pakken ‘grab’. The lack of situational variability
in the input is thus an obstacle to cross-situational learning,
because it requires a consistent co-occurrence of true mean-
ings with a word coupled with variability in the presence of
irrelevant meanings to help rule them out.

A first solution that comes to mind is a corpus representing
a wider variety of activities, with less situational uniformity,
for true cross-situational learning. The corpus from which
we drew our dyads here does have a number of other types
of situations we can include in future annotation. Second,
even with relatively homogeneous situations, we expect the
learner’s attentional mechanisms to help filter out irrelevant
meanings. Adding attentional mechanisms, such as the ones
in Nematzadeh, Fazly, and Stevenson (2012), is a next step

A final issue we observed with the data is that the true
meanings for words in an utterance are sometimes not present
within the situational interval paired with the utterance. This
problem is very salient for relational meanings, which are of-
ten displaced in time from the utterance that refers to them
(e.g., Go grab that one! or Don’t take the lid off now!). This
might explain why spatial relation terms and verbs display
weaker associations with their true meanings than do words
for objects and their properties. In the case of positive imper-
atives, we do find that the actions are often carried out slightly
later than the utterance. In Experiment 2, we explore whether
this problem of temporal displacement can be mitigated.

Experiment 2: Widening the Temporal Scope

Our hypothesis is that presenting the model with situational
meanings only from the time of the utterance impedes the
learning of relational terms. Here we explore expanding the
temporal scope of the situational input to the model.

Motivation and Set-up

Suppose that in word learning, the learner is not narrowly fo-
cussed on the situation at exact moment of the utterance, but
also considers some of the situational context taking place
around that moment. That is: not only the situation at the very
moment of the utterance is cognitively available to a learner,
but also some of the surrounding situations. To make this no-
tion precise, we assume that the learner may consider as rele-
vant to an utterance U; any meanings in the situational context
starting from the interval of the previous utterance U;_ up to
and including the interval of the next utterance U;; . (That is,
we assume that the relevance of situations overlaps previous
and subsequent utterances.) We thus evaluate the model on
three possible “windows” W of situational context for utter-
ance U;: all video intervals up to and including the previous
and next utterance in the corpus (W = U;_; : Ujy1); only the
interval of U;_; up to the current interval (W = U;_; : U;), or
the current interval up to Uiy (W =U; : Uj4).

Results

Using the same parameter settings and evaluation metrics as
in Experiment 1, we obtain the results in Table 5 (W =U; : U;

Table 5: Results of Experiment 2

w prop. object spatial action total
U-U SCP 0.10 0.05 0.09 0.07 0.08
o AP 081 025 0.19 0.15 0.31
U U SCP 0.10 0.04 0.09 0.07 0.07
ELEEAp 080 017 020 014 0.31
U U Scp 0.11 0.06 0.11 0.08 0.08
R AP 079 045 024 018 0.40
SCP 0.08 0.05 0.10 0.08 0.07

Ui1:Uin1

AP 079 041 022 020 0.39

is the window-setting used in Experiment 1). The window-
setting that only draws situational context from the intervals
between the previous utterance and the current one (W =
U;—1 : U;) does not improve over W = U; : U;. As hypothe-
sized, however, due to utterances that refer to future actions,
the results show that having a window that includes meanings
from the intervals up to the next utterance enables the model
to learn the object, spatial and action words better (at least
according to our AP measure). The trade-off is a negligible
decline in the learning of property words.

Discussion

Some important information for acquiring the meaning of re-
lational words can be found in the situations unfolding after
the utterance has been produced. Clearly, this needs to be in-
terpreted within the context of playing a game, in which the
relevant topics of communication (the game goals) often lie
in the future w.r.t. the moment of communication. While ex-
panding the situational window adds some irrelevant as well
as true meanings, the balance struck by this pragmatically-
defined windowing approach seems to help the model acquire
the meaning of relational terms (as well as objects!) some-
what better, with little negative impact on property words.
Note that the improvement from adding the post-utterance
meanings is found mainly in the AP metric: the SCP values
remain similar across the simulations. Even though the prob-
ability mass of the true meanings is not changed much, they
are now more often better than the irrelevant meanings. This
means that the probability values are close to each other and
a very small change may improve the rankings visibly.

General Discussion and Future Directions

In this research, we have developed a corpus of caregiver—
child interactions in which video is annotated with tran-
scribed utterances and a precise description of the depicted
situational context. Unlike other recent multimodal corpora,
our annotation of the situational context includes meaning el-
ements that correspond not only to objects and their proper-
ties, but to relations as well. Thus the meaning annotations
support the learning of various word types, including nouns,
adjectives, prepositions/particles, and verbs. Our initial work
has explored how we can use this corpus with a computational
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model of cross-situational word learning to explore what in-
formation must be available to the child from the situation to
support word learning, and to examine the relative ease or dif-
ficulty of learning various types of words in early acquisition.

Despite the small size of the target lexicon, the model did
not perform robustly in the learning task, revealing a num-
ber of potential areas of improvement for both the corpus
and the model itself. First, due to the cost of annotation, the
size of the corpus (only 8,000 word tokens) almost certainly
limits the learning. Nonetheless, even this small corpus can
be a complementary source of information to larger corpora
that are semantically less naturalistic, or contain only object
labels. Second, the corpus seems to lack sufficient cross-
situational variability for many words to be learned. In more
general child—caregiver interactions, a word occurs across a
wider variety of contexts (eating scenes, bed-time procedures
and so on), enabling a child to rule out as possible meanings
those aspects of the context that are irrelevant to the word.
Third, regardless of the uniformity or variability of the data,
a realistic model of word learning needs to incorporate an at-
tentional mechanism that helps it focus on those aspects of
the situation that are likely to be referred to.

Even with this restricted corpus, we find that relational
words (verbs, prepositions) are particularly problematic to
learn compared to words for objects and properties, in line
with a wealth of psycholinguistic observation to this effect
(Gleitman, 1990; Gentner, 1978). Because the situational
context to which a relational term refers is often displaced,
expanding the temporal window of situational context for
each utterance led to an improvement in the learning of rela-
tional terms, but surprisingly led to even greater improvement
in the learning of words for objects.

Perhaps, following Gleitman, more structured learning is
necessary for acquiring the meaning of relational words, but
the exact source and nature of this structured learning, and its
integration with methods of cross-situational learning, is an
exciting open issue. Important to look into, and perhaps prob-
lematic, is the high proportion of closed-class items in child-
directed utterances (e.g., pronouns, aspectual and modal aux-
iliaries, and particles) that have received little attention in
word-learning models, but may play a crucial role in using the
structure of an utterance to help determine the meaning of un-
known lexical items. More research into the degree to which
this information, as found in actual child-directed language,
can help is a question in want of an answer, and modeling
techniques combined with good data can help us approach it.
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