A Computational Study of Late Talking in Word-Meaning Acquisition

Aida Nematzadeh*, Afsaneh Fazly†, and Suzanne Stevenson‡ Department of Computer Science, University of Toronto

Late Talkers

- Most children are efficient word learners.
- Late talkers (LTs): slower vocabulary learners without evidence of any specific cognitive deficits.
- Some late talkers catch up with their age-matched peers while others exhibit Specific Language Impairment (SLI).
- Factors such as linguistic input and cognitive abilities contribute to late talking.

We use variations in attentional abilities to model differences between latetalking and normally developing children.

Our Model

Aligning words to features and updating meaning probabilities

• Over time, the model learns to attend to important aspects of a scene.

Different learners are modeled by varying the development of their attentional abilities over time.

Patterns of Learning

- Trained the model on 76K utterances for a normally developing learner (ND) and two late talkers (LT_{fast} and LT_{slow}).
- Looked at the proportion of learned words out of all the seen words over time.

Proportion of noun/verb word types learned

Both LTs are slower than the ND in vocabulary learning. LT_{fast} eventually catches up with the ND but LT_{slow} doesn't.

Novel Word Learning Experiments

- Introduced a novel word to model after training on some input.
- Tested the model on two tasks: Comprehension, Production

Semantic Organization Experiment

• Evaluated and compared the connectivity patterns of words within the semantic network of ND and LT learners.

Semantic connectivity scores of learners over time.

Both age-matched (AM) and vocabulary-matched (VM) models have more connected semantic networks than LTs.

Conclusion and Future Work

- The LT models exhibit delay in vocabulary learning, perform worse in novel word learning tasks, and have less connected networks.
- We modeled different learners by varying the attentional ability of the models: ${\rm LT_{fast}}$ eventually catches up with ND but ${\rm LT_{slow}}$ does not.
- By adding explicit categorization, we will be able to examine the learners in capturing semantic connections, and in using these connections to bootstrap word learning.