
Précis of “Computational Modeling of Word Learning:
The Role of Cognitive Processes”

Aida Nematzadeh

Introduction

Word learning is a significant part of child language learning: comprehending the mean-
ing of individual words is the first step in understanding larger linguistic units such as
phrases and sentences. This knowledge of word meanings also helps a child understand
the relations among the words in a sentence and thus facilitates the acquisition of rules of
the language (syntax). Although word learning seems effortless and simple, it is a com-
plex process that we do not fully understand: Children start with no prior knowledge of
word meanings, are not explicitly being taught, and receive highly noisy and ambiguous
input. Moreover, child word learning happens simultaneously with and depends on the
development of other cognitive processes such as memory, attention, and categorization.

This thesis takes a multidisciplinary approach to shed light on the mechanisms under-
lying child word learning – acquisition of word meanings, their semantic relations, and
the organization of this information to enable fast access. More specifically, I developed
a computational model of word learning that is subject to the same kind of constraints on
input data and processing as people. The model starts with no prior knowledge and very
limited assumptions about the word learning problem: I assume that linguistic knowledge
is not innate, and children learn word meanings by processing the input they receive using
general cognitive mechanisms (such as memory, attention, and statistical learning). Thus,
this thesis is in line with and supports the view that word learning is a result of applying
domain-general cognitive abilities to the linguistic input with no need for a “special cog-
nitive system” (e.g., Tomasello, 2005). Moreover, this assumption enables us to examine
the power of the learning algorithms – what is learnable and not learnable given the data.
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I showed that semantic acquisition in the model resembles learning in children by
evaluating the model against a wide range of empirical data from the cognitive and devel-
opmental literature. As a result, compared to models that only account for some specific
data, the model’s novel predictions are more reliable and can guide the design of fur-
ther behavioral experiments. Moreover, the computational basis of the model provides a
testable implementation of the proposed hypotheses on human semantic acquisition. It
also enables full control over experimental settings, making it possible to examine a vast
number of conditions difficult or impossible to achieve with human subjects.

I have used the model to explain or examine the possible factors behind several phe-
nomena observed in child and adult learning. In the following sections, I describe the most
important components of this research in more detail. As its key contributions, my thesis
establishes that:

• No supervision or built-in knowledge about language is needed to learn word mean-
ings and their semantic connections.

• To account for child semantic acquisition, we need to integrate other cognitive mech-
anisms (e.g., forgetting and attention) into the model’s statistical learning (which is
often ignored in word learning models). Specifically, Chapters 3 to 5 demonstrate
that three important phenomena observed in child vocabulary development (individ-
ual differences, spacing effects in learning, and learning semantic relations among
words respectively) can only be explained when these cognitive mechanisms are
integrated with word learning.

Beyond the scientific advances that result from understanding word learning mecha-
nisms, there are also practical applications, for example in identification, prevention, and
treatment of various language deficits, and in devising educational methods to improve
students’ learning. Moreover, a better understanding of human language acquisition and
organization of semantic knowledge can lead to building computer systems that better in-
teract with people, because these systems often need to address the same challenges as
those faced by children.

Chapter 2: Word Learning in Children and Computational Models

Chapter 2 discusses the previous behavioral experiments and computational modeling re-
search on child semantic acquisition. It explains what makes word learning a challenging
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problem, summarize the key theories on child word learning including predominant pat-
terns observed in word learning, and mechanisms and constraints involved in it. Moreover,
it provides an overview of the major computational models of word learning, as well as the
word learning framework that my word learning model builds on. In this section, I briefly
explain how our model represents and learns word meanings.

Given a word learning scenario, there are potentially many possible mappings between
words in a sentence and their meanings, from which only some mappings are correct. One
of the most dominant mechanisms proposed for vocabulary acquisition is cross-situational
learning: people learn word meanings by recognizing and tracking statistical regularities
among the contexts of a word’s usage across various situations, enabling them to narrow in
on the meaning of a word that holds across its usages (e.g., Siskind, 1996; Yu and Smith,
2007).

Our computational model is a probabilistic cross-situational word learner; its learning
algorithm is incremental and involves limited calculations, thus satisfying basic cognitive
plausibility requirements. Our work modifies and extends the model of Fazly et al. (2010)
to incorporate various cognitive mechanisms (such as attention, memory, and categoriza-
tion). The input to our model approximates child word learning data and consists of pairs
of utterances (the words a child hears) and scenes (the semantic features representing the
meaning of those words), as shown in Table 1.

Utterance: {let, find, a, picture, to, color }
Scene: {LET, PRONOUN, HAS POSSESSION, CAUSE, ARTIFACT, WHOLE, CHANGE, . . . }

Table 1: A sample utterance-scene pair.

Given such an utterance-scene input pair, for each word w and semantic feature f ,
the model incrementally learns P (f |w) from co-occurrences of w and f across all the
utterance-scene pairs. For each word, the probability distribution over all semantic fea-
tures, P (.|w), represents the word’s meaning. The estimation of P (.|w) is made possible
by introducing a set of latent variables, alignments, that correspond to the possible map-
pings between words and features in a given utterance–scene pair. The learning problem is
then to find the mappings that best explain the data, which is solved using an incremental
version of the expectation–maximization (EM) algorithm (Neal and Hinton, 1998).
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Chapter 3: Individual Differences in Word Learning

Chapter 3 examines the individual differences in word learning through computational
modeling. Although most children are successful word learners, late talkers exhibit sub-
stantial delay in word learning. Since these children are at risk for specific language im-
pairment – may never reach the normal level of language efficacy – identifying factors
involved in late talking is a significant research problem. Previous research has identified
different environmental and cognitive factors that might contribute to late talking (e.g.,
Paul and Elwood, 1991; Jones and Smith, 2005). In particular, late-talking children ex-
hibit difficulty in using communicative cues and initiating joint attention with their partner
(Paul and Shiffer, 1991; Rescorla and Merrin, 1998). There is also evidence for individ-
ual differences in the development of the ability of a learner to respond to joint attention
(Morales et al., 2000). However, it is not clear how these factors contribute to the patterns
observed in word learning of late talkers and normally developing learners.

We propose a computational model that enables us to thoroughly examine the possible
factors behind late talking, specifically, individual differences in attentional mechanisms
and categorization. To our knowledge, no previous computational model of word learning
in context demonstrates the effects of factors that could contribute to late talking.

Our model incorporates an attentional mechanism that gradually improves over time,
enabling it to focus (more or less) on the features relevant to a word. We simulate a con-
tinuum of learners by parameterizing the rate of development of this mechanism, mim-
icking normally-developing, temporarily delayed, and language-impaired children such
that the normally-developing learner has the fastest development rate. Because the atten-
tional mechanism impacts the learning algorithm of the model, the normally-developing
and late-talking learners differ in the quality of their learned meanings. We extend our
model with a categorization mechanism to further study how individual differences be-
tween learners give rise to the differences in abstract knowledge of categories emerging
from learned words, and how this affects their subsequent word learning.

Our simulated late-talking learners, similar to late-talking children, exhibit a delayed
and slower vocabulary growth in addition to a less semantically-connected vocabulary
compared to normally-developing children. Our model also successfully produces the dif-
ferences observed in subgroups of late talkers, that is, temporarily delayed and language-
impaired children (Section 3.3). Our results (Section 3.5.2) suggest that the vocabulary
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Figure 1: Change in the average acquisition score (Acq) of all nouns over time (measured
in number of processed utterances) for normally-developing (ND) and late-talking (LT)
learners; ND-CAT and LT-CAT use category information during learning. The normally-
developing learner benefits from using the learned categories in word learning (compare
ND and ND-CAT); the gap between ND and ND-CAT increases over time, because the
quality of the learned meaning and consequently categories improve as the model pro-
cesses more input. There is no difference between LT and LT-CAT because the LT learner
does not form informative categories.

composition of late-talking and normally-developing learners differ, at least partially, due
to a deficit in the attentional abilities of late-talking learners, which also results in the
learning of weaker abstract knowledge (semantic categories). As a result, the late-talking
learner, as opposed to the normally-developing learner, does not benefit from the learned
categories in identifying the correct meaning of the words (Section 3.5.3): Figure 1 shows
the overall pattern of word learning (measured by the average acquisition score) for both
learners with and without category knowledge.

Moreover, we use our model to examine the structure of each learner’s semantic net-
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work (which represents words and the relations among them). The structure of this net-
work is significant as it might reveal aspects of the developmental process that leads
to the network. We find that the learned semantic knowledge of a learner that simu-
lates a normally-developing child reflects the structural properties found in adult seman-
tic networks of words (see Figure 2a). More specifically, the semantic network of the
normally-developing network exhibits a small-world structure – a sparse network with
highly-connected local sub-networks, where the sub-networks are connected through high-
degree hubs (nodes with many neighbours). In contrast, the network of a late-talking
learner does not exhibit these properties: As shown in Figure 2b, most words are con-
nected with no clear grouping of the semantically-similar words.

To summarize, our results show that both the quality and structure of the semantic
knowledge differ in normally-developing and late-talking learners.

The work presented in this chapter has potential clinical applications: The predictions
of our model can help speech-language pathologists design experiments for identifying
early signs of late talking. The work presented in this chapter has been published in Ne-
matzadeh et al. (2011), Nematzadeh et al. (2012b), and Nematzadeh et al. (2014a).

Chapter 4: Memory, Attention, and Word Learning

Chapter 4 investigates the interaction of memory and attention in word learning. One
area with a wealth of relevant experimental evidence is the spacing effect in learning (e.g.,
Ebbinghaus, 1885). The observation is that people generally show better learning when the
presentations of the target items to be learned are “spaced” — i.e., distributed over a period
of time — instead of being “massed” — i.e., presented together one after the other. Inves-
tigations of the spacing effect often use a word learning task as the target learning event,
and look at the performance of adults as well as children (e.g., Glenberg, 1976; Pavlik
and Anderson, 2005; Vlach et al., 2008). While such work involves controlled laboratory
conditions, the spacing effect is very robust across domains and tasks (Dempster, 1989),
suggesting that the underlying cognitive processes likely play a role in natural conditions
of word learning as well.

Hypotheses for the spacing effect have included both memory limitations and attention.
Many researchers assume that the process of forgetting is responsible for the improved
performance in the spaced presentation (e.g., Melton, 1967; Jacoby, 1978), while others
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(a) The Network of Normally-developing Learner

(b) The Network of Late-talking Learner

Figure 2: The network of (a) normally-developing (ND), and (b) late-talking (LT) learners
with all words connected by learned meanings. In ND’s network, there are sub-networks
of semantically-related words that are connected to each other; however, in LT’s network
all words are connected without forming meaningful grouping of words.
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propose that subjects attend more to items in the spaced presentation because accessing
less recent (more novel) items in memory requires more effort or attention (e.g., Hintzman,
1974). However, the precise relation between forgetting and improved learning as well as
the precise attentional mechanism at work in the spacing experiments are not completely
understood.

We hypothesize that both forgetting and attention to novelty play a role in the spacing
effect in word learning. We examine this hypothesis by considering memory constraints
and attentional mechanisms in the context of our computational model of word-meaning
acquisition. More specifically, we extend our word learning model with two mechanisms:
(i) a forgetting mechanism that causes the learned associations between words and mean-
ings to decay over time; and (ii) a mechanism that simulates the effects of attention to
novelty on in-the-moment learning. The result is a more cognitively plausible word learn-
ing model that includes a precise formulation of both forgetting and attention to novelty.
We also use our model to investigate the interaction of these mechanisms, which is ex-
tremely difficult to achieve in experiments with human subjects.

Our model accounts for experimental results on children as well as several patterns
observed in adults (Section 4.3). Moreover, in simulations using this new model, we show
that a possible explanation for the spacing effect is the interplay of these two mechanisms
neither of which on its own accounts for the effect (Section 4.3.3). Figure 3 demonstrates
one of the observed patterns in spacing experiments, the spacing crossover interaction,
that our model successfully replicates (Section 4.3.4). In these experiments, with smaller
spacing intervals, a shorter retention interval (such as our “immediate” condition) leads
to better results, but with larger spacing intervals, a longer retention interval (such as our
“later” condition) leads to better results (Bahrick, 1979; Pavlik and Anderson, 2005). The
spacing-crossover experiment we modeled differs from other spacing effect experiments
in that it uses a longer presentation duration for the learning events. We hypothesize that
this longer presentation results in better learning, and consequently a decreased level of
forgetting (which we model with a smaller decay rate). Our model suggests an explanation
for the observed crossover: in tasks which strengthen the learning of the target item — and
thus lessen the effect of forgetting — we expect to see a benefit of later retention trials in
experiments with people.

In Section 4.5, we use our model to examine the possible explanatory factors behind
desirable difficulties in a cross-situational word learning experiment where – paradoxi-
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Figure 3: Average acquisition (Acq) score of the novel words over spacing intervals for
two test intervals, (imm)ediately after training and in a (lat)er condition. When tested
after a delay (the lat condition), the performance of the model is better for larger spacing
intervals that interestingly are more difficult learning conditions.

cally – difficulties of the word learning situation promote long-term learning (Vlach and
Sandhofer, 2010). Notably, the experimental results were not clearly pointing to the fac-
tors causing the patterns observed in the performance of the human participants. Using
our model, we have suggested that an interaction between two factors (the within-trial
ambiguity of the learning trials, and the presentation duration of each trial) might explain
the observed patterns. In addition, our results point to other distributional characteristics
of the input (experimental stimuli) that might have an impact on the performance of the
learner. These findings illustrate the role of computational modeling, not only in explain-
ing observed human behaviour, but also in fully understanding the factors involved in a
phenomenon. There are several factors involved in a cross-situational word learning ex-
periment, such as the contextual familiarity of words, and the average spacing interval
of words. Our findings signify the importance of controlling for these factors in order to
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understand the reasons behind the observed patterns. But it is difficult do so in human
experiments because the factors can interact in complex ways.

An future direction for this chapter is investigating methods for finding the optimal
spacing in word learning – the learning arrangement that results in the best performance.
Such methods can be used to improve children’s word learning. The work presented in this
chapter has been published in Nematzadeh et al. (2012a) and Nematzadeh et al. (2013).

Chapter 5: Semantic Network Learning

Children simultaneously learn word meanings and the semantic relations among words,
and also efficiently organize this information. A presumed outcome of this development
is the formation of a semantic network – a graph of words as nodes and semantic rela-
tions as edges – that reflects this semantic knowledge (e.g., Collins and Loftus, 1975).
Steyvers and Tenenbaum (2005) show that a semantic network that encodes adult-level
knowledge of words exhibits a small-world structure. That is, it is a sparse network with
highly-connected local sub-networks, where these sub-networks are connected through
high-degree hubs (nodes with many neighbours). The structure of semantic knowledge is
significant as it impacts how word meanings are stored in, searched for, and retrieved from
memory (Steyvers and Tenenbaum, 2005).

An important open question is how such a semantic network can be gradually ac-
quired as word meanings are learned. In this chapter, we extend our model to provide
a cognitively-plausible and unified account for both acquiring and representing semantic
knowledge, in particular, simultaneously learning words and creating a semantic network
structure over them. The requirements for cognitive plausibility enforce some constraints
on the semantic network creation process. The first requirement is incrementality, which
means that the model gradually builds the network as it processes the input. Also, the
number of computations the model performs at each step must be limited.

To satisfy these requirements in our model, as we learn words incrementally, we also
structure those words into a semantic network based on the (partially) learned meanings.
More specifically, when adding or updating a word’s connections in the network, the model
only looks at a subset of words rather than comparing the target word to all the nodes in the
network. For a given word, this subset of words is selected by using the evolving knowl-
edge of semantic connections among words as well as their usage context. To capture the
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semantic connections among words, the model incrementally forms semantic clusters as it
processes each word.

Our model is successful in creating networks that reflect the semantic connectivity
and structure of adult semantic knowledge. To evaluate the semantic connectivity of our
learned network, we compare these learned semantic distances to the “gold-standard” sim-
ilarity scores that are calculated using a similarity measure based on WordNet – a manu-
ally created lexical hierarchy (Fellbaum, 1998). The network structure is examined to see
whether, similar to adults, it exhibits a small-world structure, i.e., has certain connectivity
properties – short paths and highly-connected neighborhoods – that are captured by var-
ious graph metrics. To summarize, the model’s success stems from incorporation of the
knowledge of semantic categories and information inherent in the context of words.

A significant application of this work is unsupervised ontology learning, specifically,
adding new word senses to existing ontologies without having to compare them to all the
existing words in the ontology. The work presented in this chapter has been published in
Nematzadeh et al. (2014b).

Chapter 6: Conclusions

This thesis uses computational modeling to investigate the mechanisms responsible for vo-
cabulary development. I have designed and developed a computational model that mimics
child vocabulary development – it learns the meaning of words along with the semantic
connections among them. Moreover, in the model, word learning is naturally integrated
with other cognitive processes such as memory and attention. This thesis demonstrates
that the domain-general learning mechanisms are sufficient for modeling word learning.
Moreover, it shows that word learning in the context of cognitive processes is needed to
predict the patterns observed in child vocabulary development.

The model presented in this thesis has been extended to explain how children learn
to generalize a word to the appropriate level of a hierarchical taxonomy, i.e., dog refers
to all dogs, not just the Dalmatians or any animal. Our model, without incorporating
any additional biases and, simply, through learning meanings for words accounts for the
empirical word generalization data. More specifically, we find that capturing the interac-
tion of category and instance frequencies in the data (e.g., number of Dalmatians versus
breeds of dogs) is the key factor in modeling the observed generalization data in children
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(Nematzadeh et al., 2015).
A long-term future direction is to learn meaning representations for sentences. Under-

standing the meaning of individual words and their semantic relations is not sufficient for
comprehending the meaning of sentences. To understand a sentence’s meaning, children
need to recognize how the meaning of its words relate and interact. Consider the sentences
“Sebastian ate the apple” and “The apple was eaten by Sebastian”. To recognize that these
sentences express similar information, a computational model needs to (a) know the word
meanings, and (b) identify the thematic relations between verbs and their arguments, i.e.,
how noun phrases relate to the verbs: in both sentences, despite the difference in word
orders, “Sebastian” performed the action of eating, and “apple” was the entity acted on.
Simultaneous learning of word meanings and these thematic relations enables the model
to provide rich meaning representations for sentences.

To conclude, computational modeling is a powerful tool for studying language acqui-
sition, and has gained tremendous popularity in the last decade. I believe that, instead of
building small independent models that only explain some specific data, we should design
unified models that account for all the “significant” data available for a given phenomenon.
Such frameworks, when validated thoroughly, can produce reliable predictions. My the-
sis is in line with this research philosophy; our computational model provides a general
framework for studying vocabulary development: it is used to examine various aspects
of word learning, predicts several patterns observed in word learning, and produces novel
predictions.
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