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Regularities in the World

People are great at learning from regularities.

2



Learning word meanings:

Language Learning and Regularities
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Look at the dax!A dax!

dax means dog



Language Learning and Regularities

Anticipating the next words:

She is drinking   
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coffee

lemonade

doogh

a chair



How Do We Learn These 
Regularities?
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Probabilities: Modeling Regularities

How likely something is to happen?
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Possible outcomes: {heads, tails}
Current outcome: heads

½ or 50%

Probability of an event: 
# of ways it can happen / # of outcomes



Probabilities: Modeling Regularities

Flipped a coin 20 times:

What is the probability of observing heads?

P(heads) = 1 / 20 = 5 %
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Language Learning and Probabilities

Anticipating the next words:

She is drinking   
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hot cocoa

hot cocoa

lemonadeUsing knowledge given the 
situation: hot drink is better 
on a cold day.

lemonade

In a cold winter day, she is drinking



Combining Evidence & Knowledge
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hot cocoa

lemonade

In a cold winter day, she is drinking
evidence

hypothesis 1

The Bayes rule:
likelihood prior

posterior

P(e)

hypothesis evidence

hypothesis 2



Evidence & Knowledge in Action

Let’s calculate the probability of each hypothesis!
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hot cocoa

lemonade

In a cold winter day, she is drinking
evidence

h1

h2



Can Computers Learn 
These Regularities?
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Machine Learning



Machine Learning of Regularities
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When Hypotheses Are Classes

Many language processing tasks are classification!
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H1: the cat class H2: the dog class

classification



Spam Detection

Classify email to spam and non-spam
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“Dear winner”; “Click this link”; “Urgent: send me your 
credit card information”; ...



Authorship Attribution

Find the text author and author’s characteristics:
● Gender, age, etc
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Sentiment Analysis

Positive/negative orientation (sentiment) of text:
● Book, restaurant, movie and product reviews
● Political text
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Classification: Formalism

Given an input & fixed classes C=c1, c2, …, cM, find:
● the probability of each class
● the predicted class ci

Supervised training: uses data points & their 
gold-standard labels, (x1, c1), (x2, c2), …, (xN, cN)

Goal: Find the correct class for the new data point 

17



Classification: Example

18

?

class cdata x

prediction

training
test



discriminative 
models

Classification Algorithms

generative 
models
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likelihoodposterior

prior

=

easier to traincan use prior info



Neural Networks as Classifiers
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input layer
hidden layer

output layer

x

W

c

desperate

cool

never
rotten (1) or 
fresh (0)? 

small random numbers

100

010

001

0.01

0.02



Neural Networks as Classifiers
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x W

C

100

010

001

Y = Wx

C = f(Y)

Compare Y with the “real” output

Calculate an error: how similar 
the calculated and real output 
are. 

Update W based on the error.



Y = Wx

C = f(Y)

Compare Y with the “real” output

Calculate an error: how similar the calculated and real 
output are. (forward pass)

Update W based on the error. (backpropagation)

Neural Networks as Classifiers
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Neural Network Playground!

Let’s watch a neural network being trained!
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https://playground.tensorflow.org


Evaluating Classifier Performance
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Consider a binary detection task.
● Label text positive or negative.

Gold labels: human labels used as ground truth.
● Gold label is either positive or negative.

Need metrics to quantify classifier’s performance.



Evaluation Metrics: Precision/Recall
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Precision: correctly labeled + / all labeled +.

Recall: correctly labeled + / all truly +.

F-measure combines both: harmonic mean.
● Weighs min of two more heavily.



Questions?
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Improving Sentiment Analysis

Dealing with negation:

I didn’t love the food vs I loved the food. 

Add a prefix after negation (n’t, not, no, never)

I didn’t NOT-love NOT-the NOT-food:
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