Learning from Regularities in the World

Aida Nematzadeh

Regularities in the World

People are great at learning from regularities.

Language Learning and Regularities

Learning word meanings:

dax means dog

Look at the dax!

A dax!

Language Learning and Regularities

Anticipating the next words:

She is drinking coffee

lemonade

a chair

doogh

How Do We Learn These Regularities?

Probabilities: Modeling Regularities

How likely something is to happen?

1/2 or 50%

Possible outcomes: {heads, tails} Current outcome: heads

Probability of an event: # of ways it can happen / # of outcomes

Probabilities: Modeling Regularities

Flipped a coin 20 times:

What is the probability of observing heads?

P(heads) = 1 / 20 = 5 %

Language Learning and Probabilities

Anticipating the next words:

She is drinking hot cocoa lemonade

In a cold winter day, she is drinking hot cocoa

Using knowledge given the situation: hot drink is better on a cold day.

lemonade

Combining Evidence & Knowledge

hypothesis 1 In a cold winter day, she is drinking hot cocoa evidence hypothesis 2 lemonade

The Bayes rule:

posterior

P(h|e) =hypothesis evidence

 $= \frac{P(e|h)P(h)}{\sum_{h'}(e|h')P(h')}$

Evidence & Knowledge in Action

In a cold winter day, she is drinking hot cocoa h₁ evidence lemonade h₂

Let's calculate the probability of each hypothesis!

Can Computers Learn These Regularities?

Machine Learning

Machine Learning of Regularities

When Hypotheses Are Classes

H₂: the dog class

Many language processing tasks are classification!

Spam Detection

Classify email to spam and non-spam

	Margaret Linda Hogan	My Greetings, - My Greetings, I am Ms Margaret Linda Hog
*	Mailbox Validation	Your mailbox Will be closed if has exceed storage limit.
*	E-mail Verification Port.	Verify Your Account to avoid closure Dear nematzadeh
*	S.Mani ICCAIRO 20.	International Conference on Control, Artificial Intelligence
*	Admin Notification	Re-validate your account to avoid termination - Dear nen

"Dear winner"; "Click this link"; "Urgent: send me your credit card information"; ...

Authorship Attribution

Find the text author and author's characteristics:

• Gender, age, etc

Study claims Agatha Christie had Alzheimer's

Textual analysis detects signs of sharply declining faculties towards the end of beloved mystery writer's life

An in-depth analysis of Agatha Christie's novels has suggested that the muchloved author of more than 80 mysteries was suffering from Alzheimer's disease.

Academics at the University of Toronto studied a selection of Christie's novels written between the ages of 28 and 82, counting the numbers of different words, indefinite nouns and phrases used in each.

Sentiment Analysis

Positive/negative orientation (sentiment) of text:

- Book, restaurant, movie and product reviews
- Political text

It's just <u>gorgeous</u>, like a flipbook made of dreamy vintage postcards that are somehow about contemporary life in Los Angeles.

The cinematography and special effects are fantastic, but don't actually compensate for a weak storyline, and forgettable musical numbers.

Classification: Formalism

Given an input & fixed classes C=c₁, c₂, ..., c_M, find:

- the probability of each class
- the predicted class c_i

Supervised training: uses data points & their gold-standard labels, (x_1, c_1) , (x_2, c_2) , ..., (x_N, c_N)

Goal: Find the correct class for the new data point

Classification: Example

data x	Featuring a case that jumps around like a jack-rabbit, look like a return to form.	۲	class c	
	The result is a season of television that seems at once overstuffed and thinned out - long on character and events, but short on any sense of mounting tension, urgency or consequences.	*		trainir
	It's never as cutting edge or plainly cool as it so desperately wants to be.	*		90 19
	Exhausted, and exhausting.	*		
	It is joyful. It leaps off the screen.	۲		
prediction	It's not a bad series, in fact it is entertaining, but I fear that it may move on to being forgotten. [Full Review in Spanish]	?		test

Classification Algorithms

prior

 $P(c|d) = \frac{P(d|c)P(c)}{P(d)}$

discriminative models

$$P(d|c)$$
.

likelihood

can use prior info

posterior

easier to train

Neural Networks as Classifiers

Neural Networks as Classifiers

Y = Wx

Compare Y with the "real" output

Calculate an error: how similar the calculated and real output are.

Update W based on the error.

Neural Networks as Classifiers

Y = Wx

C = f(Y)

Compare Y with the "real" output

Calculate an error: how similar the calculated and real output are. (forward pass)

Update W based on the error. (backpropagation)

Neural Network Playground!

Let's watch a neural network being <u>trained</u>!

Evaluating Classifier Performance

Consider a binary detection task.

• Label text *positive* or *negative*.

Gold labels: human labels used as ground truth.

• Gold label is either positive or negative.

Need *metrics* to quantify classifier's performance.

Evaluation Metrics: Precision/Recall

Precision: correctly labeled + / all labeled +.

Recall: correctly labeled + / all truly +.

F-measure combines both: harmonic mean.

• Weighs min of two more heavily.

Questions?

Improving Sentiment Analysis

Dealing with negation:

I didn't love the food **vs** I loved the food.

Add a prefix after negation (n't, not, no, never) *I didn't NOT-love* NOT-the NOT-food: