On Evaluating Neural Representations

Aida Nematzadeh DeepMind

Aishwarya Agrawal

Devang Agrawal

Lisa Anne Hendricks

Elnaz Davoodi

Cyprien de Masson d'Autume

Ellen Gilsenan-McMahon

Jordan Hoffmann

Ivana Kajic

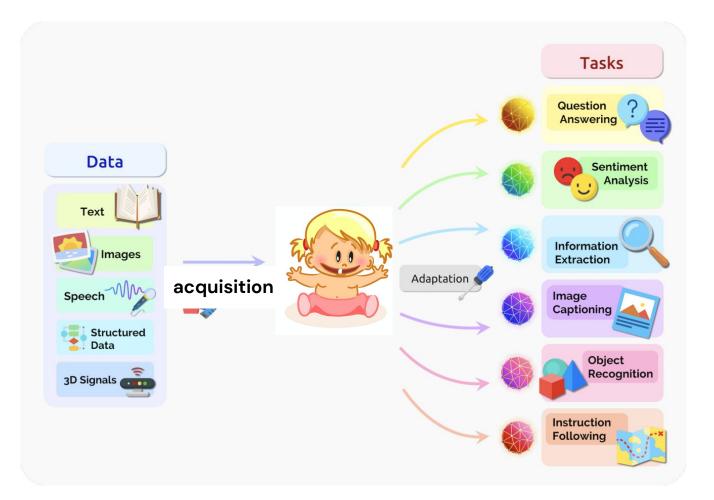
Adhi Kuncoro

Kevin Villela

Dani Yogatama

Susannah Young

Phil Blunsom, Kaylee Burns, Erin Grant, Alison Gopnik, Tom Griffiths, and Xiang Lorraine Li +



Evaluating the learned representations is crucial for making progress towards more capable models.

Data

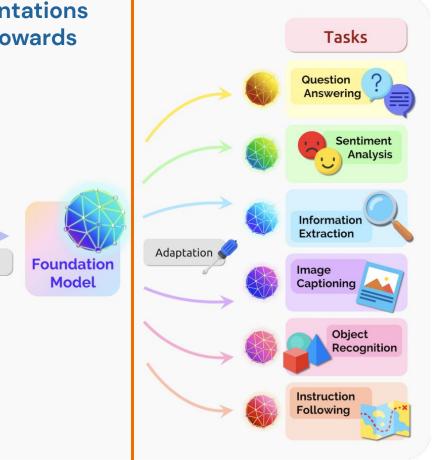
Images

Structured Data Training

Speech MM

3D Signals

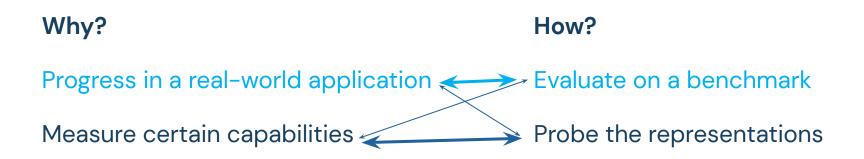
Text



The Why and How of Evaluation

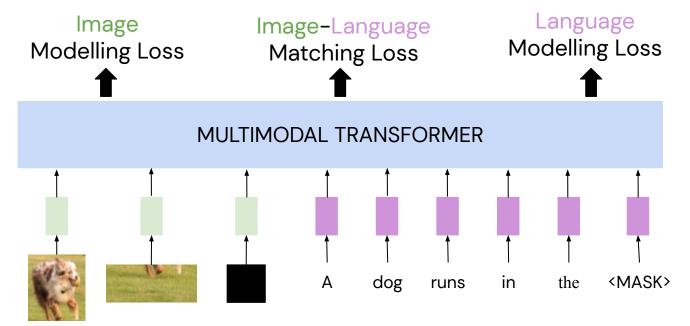
Why? How? Progress in a real-world application Evaluate on a benchmark Measure certain capabilities Probe the representations

But, how we set up the evaluation pipeline matters.



Does improving performance on a benchmark result in a better real-world application?

Multimodal Transformers (MMT)



Similar architectures are widely adopted multimodal pretraining.

Answering Questions from Blind People

Q: What are the people waiting for? A: bus

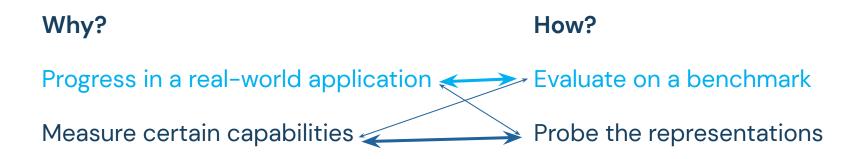
Q: What is this? A: 10 euros.

<u>VizWiz</u> is a benchmark curated from visually-impaired users.

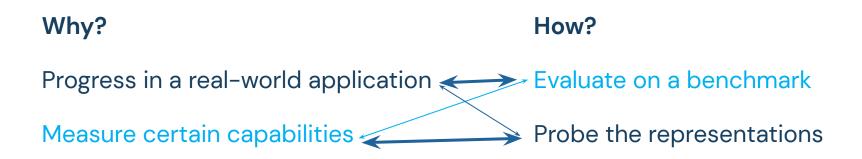
Answering Questions from Blind People

Multimodal transformers achieve SOTA performance on VQAv2. But if we test pretrained <u>multimodal transformer</u> <u>models</u> on VizWiz:

- Zero-shot accuracy is lower than the majority class baseline.
- Fine-tuned models are 6% behind the VizWiz leaderboard.
- The generative evaluation does not limit the number of answers, and thus is more suitable for the real–world application of VQA.

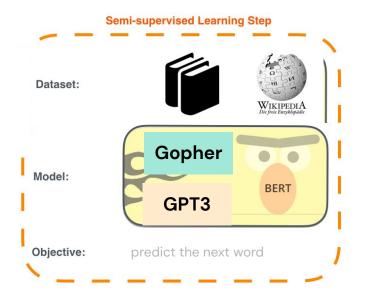


Does improving performance on a VQA benchmark result in a better real-world application? Not all benchmarks measure real-word progress. Identifying "real-world" benchmarks in each domain (language/vision/multimodal) is important.



Does the benchmark measure the capabilities it is designed to test?

Pretraining in NLP: Large Language Models (LM)



Performance gain is due to **architecture** innovations & **larger**

data. [Peters et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018; Radford et al., 2018; Raffel et al., 2019, Rae et al., 2022]

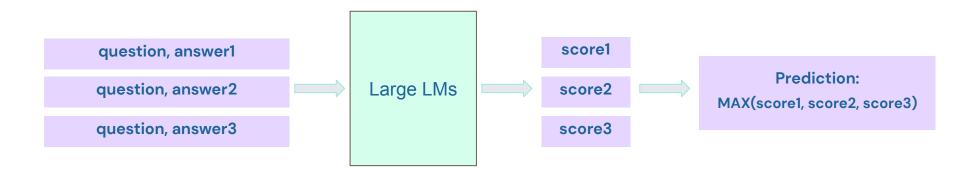
Evaluating Against Different Types of Common Sense

Dataset	Example
Physical: PIQA	"To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Cotton swab "
Social: Social IQA	"Alice helped Tony, how would Tony feel? Grateful."
Physical, Social etc: WinoGrande	"The trophy didn't fit the suitcase, because it is too big. 'It' refers to? The trophy "
Physical, Temporal etc: HellaSwag	Four sentence short story, predict the possible ending.
All datasets are multiple-choice selections problem.	

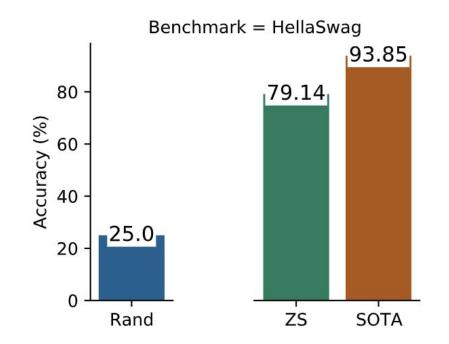
Do Large LMs have Common Sense?[arXiv:2111.00607]

Evaluate a pre-trained language model (LM) in a zero-shot way:

- Question: Alice helped Tony, how would Tony feel?
- Answers: 1. Grateful 2. Inconvenienced 3. Angry

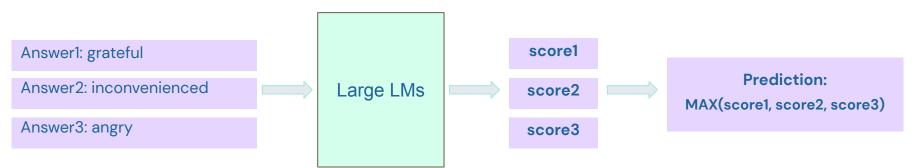


Gopher's Zero-shot Performance [arXiv:2111.00607]



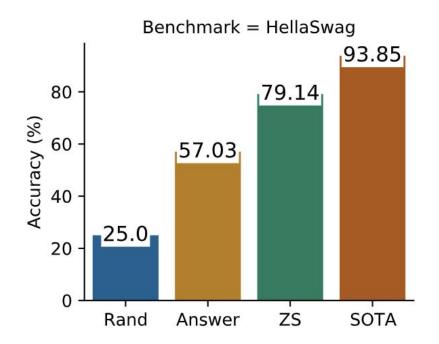
How much of the performance is contributed to answers?

Answer-Only Baseline

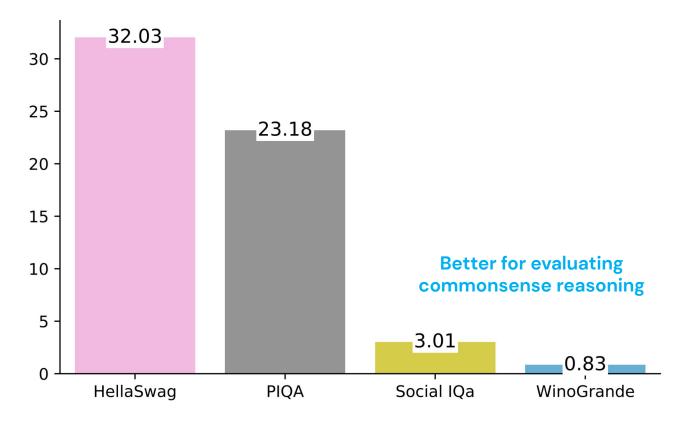


Should be similar to random baseline

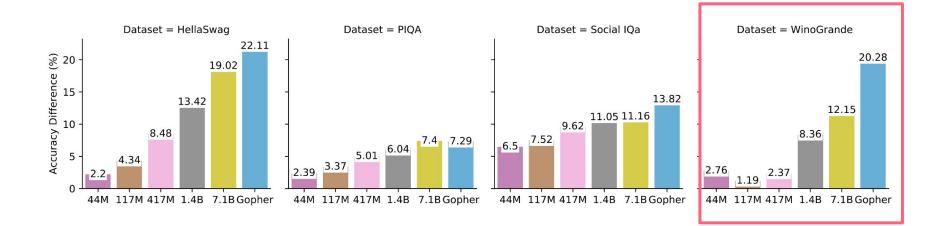
Gopher's Zero-shot Performance [arXiv:2111.00607]



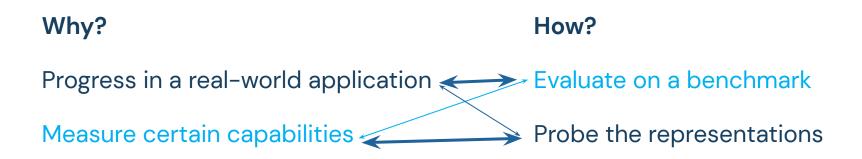
Random VS. Answer-only Baseline



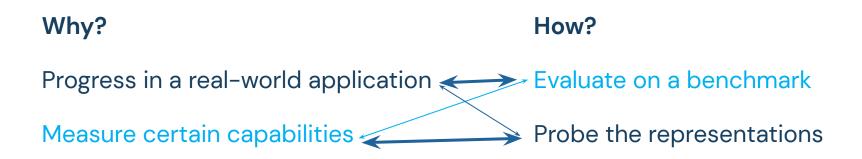
Does Increasing Model Size Help?



As we increase model size, the gap between zero-shot and answer-only performance improves for some benchmarks.



Does a **common-sense** benchmark measure the capabilities it is designed to test? Models can answer some common-sense questions correctly without any common-sense reasoning.



Does the benchmark measure the capabilities it is designed to test?

Evaluate in a Transfer Setting

Train a multimodal transformer on one dataset (VQAv2), test on another one (VizWiz): we observe ~25% drop in accuracy.

Q: What are the people waiting for? A: bus

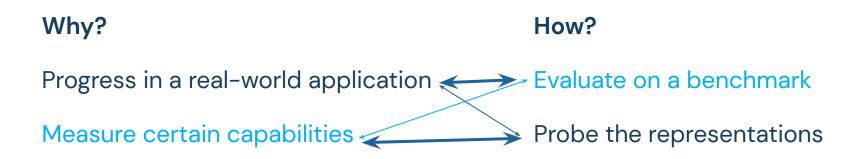
Q: What is this? A: 10 euros.

Evaluate in a Transfer Setting

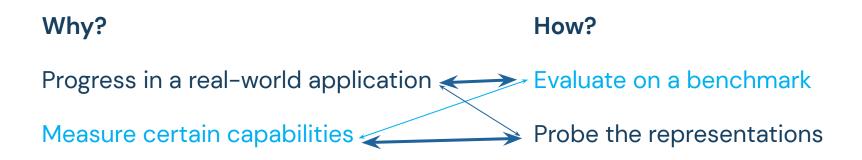
Train a multimodal transformer on one dataset (VQAv2), test on another one (GQA): we observe ~19% drop in accuracy.

Q: What are the people waiting for? A: bus

Q: What animal is in the box? A: bear.



Does the VQA benchmark measure the capabilities it is designed to test? Models tend to learn the dataset, not the task.



Does the benchmark measure the capabilities it is designed to test? Not always.

Consider strong baselines and evaluation paradigms that tests for generalizability/transfer.

Why? How? Progress in a real-world application Evaluate on a benchmark Measure certain capabilities Probe the representations

What are the control conditions to ensure that a probe measures a certain capability of a model?

Probing Representations for Verbs

Concrete nouns are **consistent** and **easily observable**.

classification

Verbs are less so, as they capture **relations**.

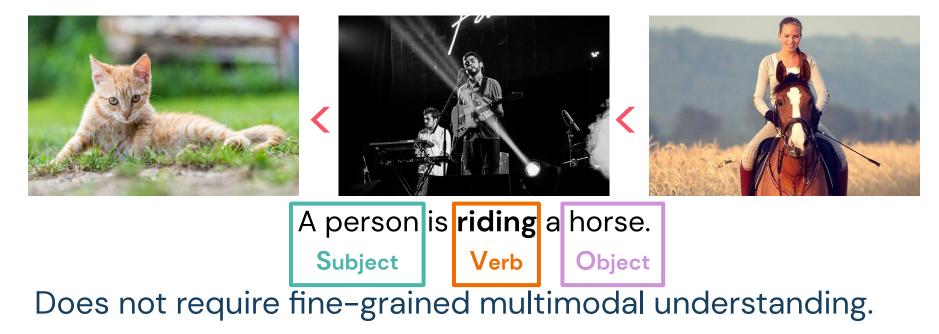
structured prediction

Zero-Shot Image Retrieval (Domain Transfer)

Zero-shot image retrieval directly evaluates the goodness of pretrained representations.

What Image Retrieval Tests

Order images with respect to their match to a sentence.



What SVO-Probes Tests [Hendricks et al., Findings of ACL 2021]

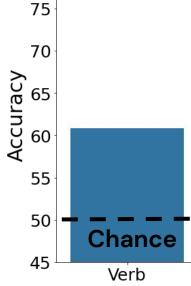
A person is **riding** a horse

X

Correctly classify both the **positive** & **negative** examples.

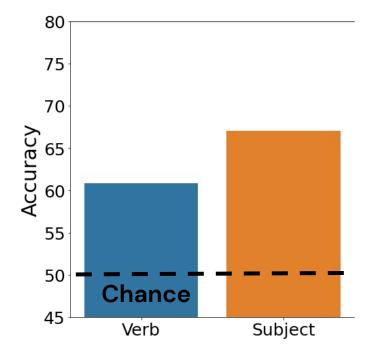
We have released our dataset! 🎉 🎉

A woman lying with a dog

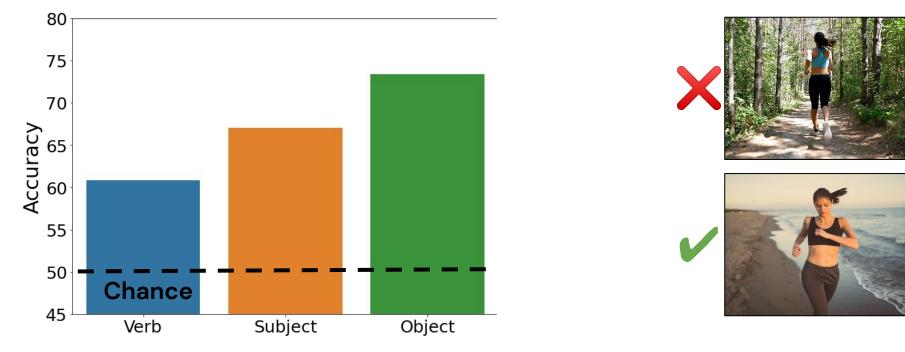


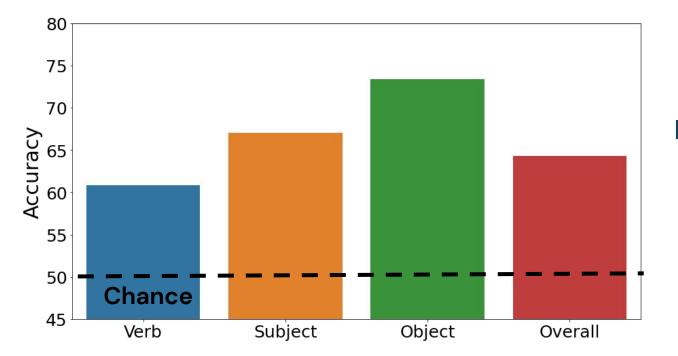
80

A animal lays in the grass



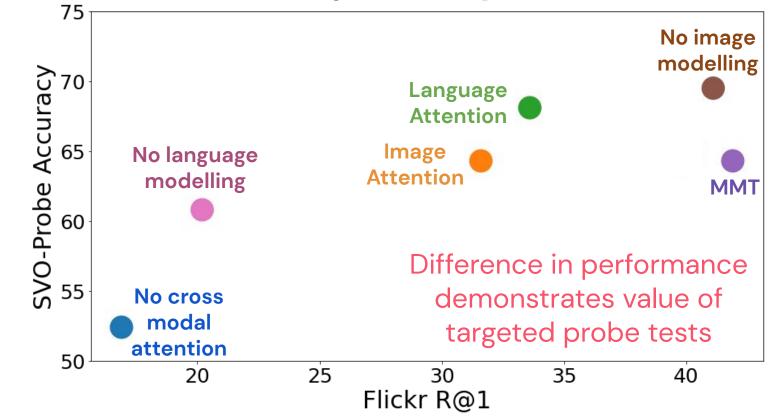
A woman jogs on the **beach**

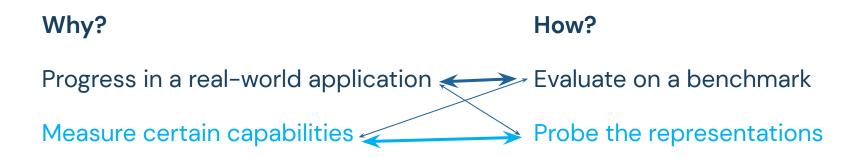




Overall MMT performance 64.3 -lots of room for improvement!

SVO-Probes Accuracy vs Image Retrieval [arXiv:2102.00529]





What are the control conditions to ensure that a probe measures the **verb understanding** capability of a model? Hard negatives are important in measuring fine-grained understanding.

Why? How? Progress in a real-world application Evaluate on a benchmark Measure certain capabilities Probe the representations

What are the control conditions to ensure that a probe measures a certain capability of a model?

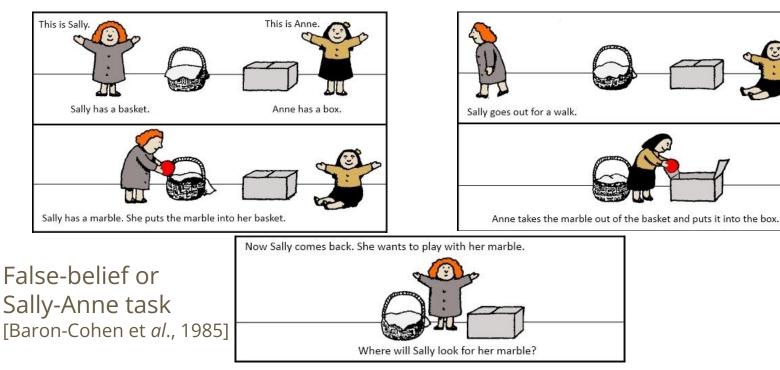
Evaluating the Reasoning Capacity [Weston et al., 2016]

Facebook bAbi probes 20 types of reasoning. Current models fail only a few of the bAbi tasks.

Task 1: Single Supporting Fact	Task 2: Two Supporting Facts
Mary went to the bathroom.	John is in the playground.
John moved to the hallway.	John picked up the football.
Mary travelled to the office.	Bob went to the kitchen.
Where is Mary? A:office	Where is the football? A:playground
Task 3: Three Supporting Facts	Task 4: Two Argument Relations
John picked up the apple.	The office is north of the bedroom.
John went to the office.	The bedroom is north of the bathroom.
John went to the kitchen.	The kitchen is west of the garden.
John dropped the apple.	What is north of the bedroom? A: office
Where was the apple before the kitchen? A:office	What is the bedroom north of? A: bathroom

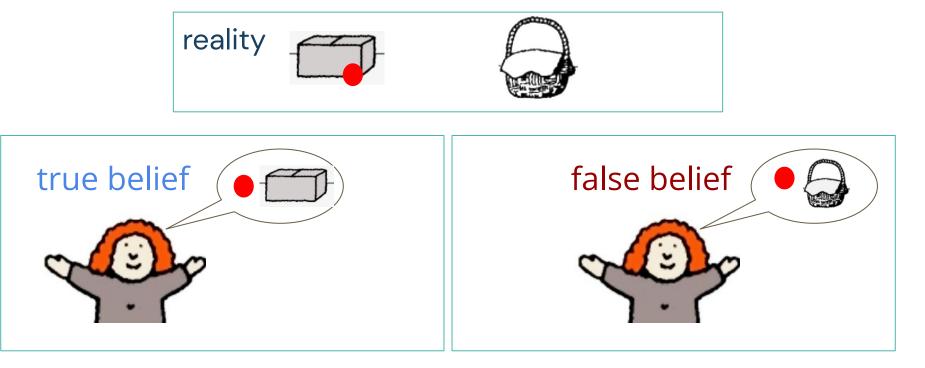
Can Models that Solve bAbi reason?

Theory of Mind: Reasoning About Mental States



Need to reason about others' beliefs & maintain multiple representations.

True or False Beliefs



Do Models Use the Right Information?

An example of a reasoning task from the bAbi dataset:

The last sentence has the answer.

Mary got the milk there. Sandra went back to the kitchen. Mary travelled to the hallway.

Q: Where is the milk? **A:** hallway

Anne entered the kitchen Sally entered the kitchen. The milk is in the fridge. Anne moved the milk to the pantry.

MemoryWhere was the milk at the beginning?RealityWhere is the milk really?First-orderWhere will Sally look for the milk?Second-orderWhere does Anne think that Sally searches for the milk?

Anne entered the kitchen Sally entered the kitchen. The milk is in the fridge. *Sally exited the kitchen.* Anne moved the milk to the pantry.

MemoryWhere was the milk at the beginning?RealityWhere is the milk really?First-orderWhere will Sally look for the milk?Second-orderWhere does Anne think that Sally searches for the milk?

Second-order False Belief Anne entered the kitchen Sally entered the kitchen. The milk is in the fridge. *Sally exited the kitchen.* Anne moved the milk to the pantry. *Anne exited the kitchen. Sally entered the kitchen.*

MemoryWhere was the milk at the beginning?RealityWhere is the milk really?First-orderWhere will Sally look for the milk?Second-orderWhere does Anne think that Sally searches for the milk?

Tasks and Questions [arXiv:1808.09352] tasks					
	True Belief	False Belief	Second-order False Belief		
Memory	fridge	fridge	fridge		
Reality	pantry	pantry	pantry		
First-order	pantry	fridge	pantry		
Second-order	pantry	fridge	fridge		

We group 5 task-question pairs to form a story.

questions

Techo and Orections

Results: Hardest Questions

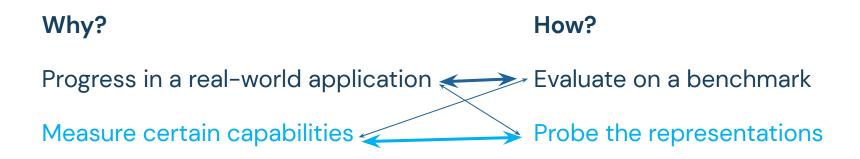
tasks tasks	True Belief	False Belief	Second-order False Belief
MemN2N [Sukhbaatar et <i>al.</i> , 2015]	2 nd -order Belief	1 st -order Belief	1 st -order Belief
Multiple Observer [Grant et al., 2017]	Memory	1 st -order Belief	1 st - & 2 nd - order Belief

First-order belief questions are harder than the second-order ones.

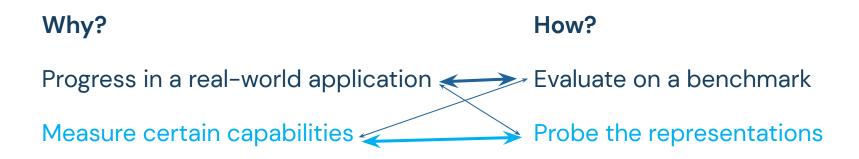
 $(\bigcirc$

Results: Hardest Questions

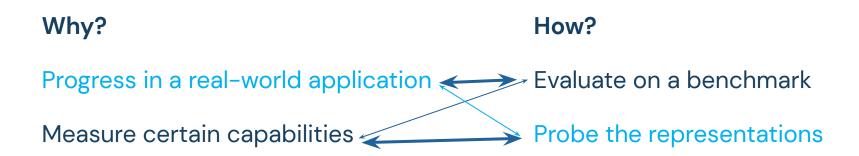
tasks models	True Belief	False Belief	Second-order False Belief	
MemN2N [Sukhbaatar et <i>al.</i> , 2015]	2 nd -order Belief	1 st -order Belief	1 st -order Belief	, liet
Multiple Observer [Grant et al., 2017]	Memory	1 st -order Belief		B B
EntNet [Henaff et al., 2017]	Memory	Memory	Memory	emol
RelNet [Santoro et al., 2017]	Memory	Memory	Memory	Ě



What are the control conditions to ensure that a probe measures the **theory-of-mind** capability of a model? Ask multiple questions about a situation to test if a model understand it.



What are the control conditions to ensure that a probe measures a certain capability of a model? Treat the experiments as behavioral experiments. Consider hard negatives and multiple questions for a given situation.



On Evaluating Neural Representations

Does improving performance on a benchmark result in a better real-world application?

Does the benchmark measure the capabilities it is designed to test?

What are the control conditions to ensure that a probe measures a certain capability of a model?

On Evaluating Neural Representations

We need to consider the real-world applicability of a benchmark, strong baselines, control conditions, and evaluation paradigms to better test for generalizability of our models.

To build stronger models, we need to better evaluate them first.

Thanks!