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Language Learning in Children
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Boz bazi mikonad!

Blah blah blahThe goat is playing!



Gap Between People and Computers
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“The goat is streaming!”

AI is still far from human performance.



Computational Study of Language

Examine the role of:

● General vs language-specific mechanisms.

● Innate/learned biases.

● Appropriate representations.

● Interaction with other people.
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Can we use the insights to improve computers?



Learn, Represent, and Understand

Word learning
● General vs language-specific mechanisms
● Innate/learned biases

Word representations
● The appropriate representations

Understanding mental states 
● Interaction with other people
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Comp Sci 
informs 
Cog Sci

Cog Sci
informs
Comp Sci 

Word learning
● General vs language-specific mechanisms.
● Innate/learned biases.

Word representations
● The appropriate representations.

Understanding mental states 
● Interaction with other people.



Learn, Represent, and Understand

Word learning
● General vs language-specific mechanisms.
● Innate/learned biases.

Word representations
● The appropriate representations.

Understanding mental states 
● Interaction with other people.
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Show what is learnable by applying 
general cognitive mechanisms to 

word-learning input.



Word Learning
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cat



Cross-situational Learning

People are sensitive to the statistical regularities 
across situations. [Pinker 1989; Yu & Smith 2007]
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A dax! Look at the dax!

dax means dog



Input: a sequence of utterance-scene pairs.

Construct a gold-standard lexicon that provides 
a ground-truth meaning for each word.

Word Learning Input
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taken from CHILDES corpora

elephant: {SOLID, ANIMAL, ENTITY, ...}

[Nematzadeh et al, CogSci 2012]



Word Learning Input

Input: a sequence of utterance-scene pairs.
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taken from CHILDES corpora

Scene represented by sampling features from the 
meaning of each word in the utterance.

➔ time = 1  
➔ Utterance: {she, drinks, milk} 
➔ Scene: {ANIMATE, FEMALE, CONSUME, DRINK, ...}
➔ time = 2   
➔ Utterance: {let's, play, down, here, because, ...}
➔ Scene:  {LET, ..., PLAY, DOWN, DISTANCE, ...}



Input: a sequence of utterance-scene pairs.

Utterance: {she, drinks, milk} 

     

Scene: {ANIMATE, FEMALE, CONSUME, DRINK, ...}

Word Learning: Formalism
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What features are part of a word’s meaning?

Initially all features 
are equally likely.

Output: word meanings ─ a probability 
distribution over a set of features, P(.|w).

milk:

Utterance: {she, drinks, milk} 

     

Scene: {ANIMATE, FEMALE, CONSUME, DRINK, ...}
                     ?                ?                ?            ?

 



Word Learning: Formalism
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Utterance: {she, drinks, milk, ...} 

     

Scene: {..., FEMALE, ..., IS-LIQUID, ...}

ti
m

e 
= 

1

Utterance: {milk, is, white} 

     

Scene: {IS-LIQUID,  ...}ti
m

e 
= 

2

Update what model knows.

Align words & features using what model knows.

alignment

[based on Fazly et al. 2010]



The Model: Foundation 
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(1) Calculate probability of alignments using 
learned meanings.

(2) Adjust learned meanings.

Repeat (1) and (2) for each input pair. 

association of 
word and feature

Incremental 
EM 



Word Learning Results
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The model fails at learning low-frequency 
words, but children do not.

Cosine between 
learned & 
gold-standard 
meaning



Learn, Represent, and Understand

Word learning
● General vs language-specific mechanisms.
● Innate/learned biases.

Word representations
● The appropriate representations.

Understanding mental states 
● Interaction with other people.
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Can biases guide learning in more 
challenging situations?



Mutual Exclusivity Bias in Children
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Give me dax

familiar object unfamiliar object

[Markman and Wachtel 1988]

✓

Limit the number of possible word labels for a 
familiar object.



Limit the number of possible word labels for a 
familiar object.

Add competition (dependence) among words:

Utterance: {she, drinks, milk, ...} 

     

Scene: {..., FEMALE, ..., IS-LIQUID, ...}

Mutual Exclusivity Bias in Model
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alignment

competition among words 

model’s knowledge
hypotheses



Word Learning Results: ME Bias
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The ME bias helps learning low-frequency 
words, but it is not enough.

Mutual 
Exclusivity



Learn word labels for the whole object.

The Whole-Object Bias in Children
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What is dax?

[Markman, 1991]

✓



Represent and align referents as a whole.

The Whole-Object Bias in Model
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Utterance: {she, drinks, milk} 

     

Scene: {{ANIMATE, FEMALE, ...}, {CONSUME, DRINK, ...}, ...}

alignment

Add ME bias

Meaning probability



Frequency and Ambiguity
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Biases are most important in more 
challenging learning situations.

Adding WO

Adding WO

[Nematzadeh, Beekhuizen, Huang, & Stevenson, submitted]



Generalizing a Novel Word
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Golden Retriever?

dax dog (any dog breed)?

animal?

Cross-situational statistics are consistent with all. 

Why dog? A bias that focuses generalization to 
the basic-level (cognitively natural) categories.



Basic-Level Bias in People 

Training: (the effect of number of examples)

1-example condition                        3-example condition
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Test: Pick everything that is a dax.

[Xu & Tenenbaum, 2007] 



      

Basic-Level Bias in People 
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basic-level generalization

Basic-level 
generalization 
is attenuated 
(suspicious 
coincidence).

[Xu & Tenenbaum, 2007] 



Feature Dependencies 

Problem: All co-occurring features compete for 
probability mass.
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distribution over all features



Feature Dependencies 

Problem: All co-occurring features compete for 
probability mass.

Enforce competition among dependent features:
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w
ord m

eaning        

what people know    what the model assumes



Associating unobserved features to a word.

Generalization in Model

Problem: generalization is only influenced by 
token frequency.
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3 types
3 tokens

1 type
3 tokens

token frequency of observed features

function of number 
of types in a group



Basic-Level Generalization in Model
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Replicates the suspicious coincidence effect — decrease in 
basic-level generalization.

1 example      3 examples

[Nematzadeh, Grant, & Stevenson, EMNLP 2015]

[Xu & Tenenbaum, 2007]
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The Role of Biases in Learning

Guide learning in challenging situations:

● Low frequency.
● Ambiguity.
● Identifying the correct-level of generalization.

Can be implemented as: 

● Structural assumptions.
● Sensitivity to different statistics.



Learn, Represent, and Understand

Word learning
● General vs language-specific mechanisms.
● Innate/learned biases.

Word representations
● The appropriate representations.

Understanding mental states 
● Interaction with other people.
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What is the right representation to capture 
each aspect of human similarity judgements?



Word Representations
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cat

lion

dog

zebra

milk



Vector-Space Representations

Word similarity; word sense 
disambiguation; semantic role 
labeling; query expansion; 
information extraction;  ...

Recent models (Word2Vec and GloVe)
● Trainable on very large corpora (> 100B words).
● Large coverage (vocabulary size).
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cat

dog

cited ~3100 cited ~1200



Vector-Space Rep: Shortcomings

Obey geometric constraints of Euclidean spaces: 
● Asymmetry in similarity judgements.

● Triangle Inequality.
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Do the recent models suffer from this?

text book cobra snake 

[Tversky, 1977; Griffiths et al., 2007]

read 

America 

eagle

bird

✓ ✓



Evaluating Vector-Space Rep. 

Data: Nelson association norms. [Nelson et al., 1998]

● Table: chair (0.77), cloth (0.03), eat (0.03)
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[Nematzadeh, Meylan, & Griffiths, 2017] 

Measure: conditional probability (not distance).

[Steyvers & Tenenbaum 2005]



Results: Triangle Inequality

Plot distribution of P(w3|w1).

How does the distribution look for Nelson norms?
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America 

eagle

bird

w2

w3w1

Select tuples where both 
P(w2|w1) and P(w3|w2) are 
greater than a threshold.



Distribution of P(w3|w1) in Nelson  
norms (for a high threshold):  
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higher P(w3|w1)

Results: Triangle Inequality

Many w3-w1pairs have 
low similarity (~zero).

Do the models under evaluation 
predict this pattern?

America 

eagle

bird

w2

w3w1
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la
rg

er
 th

re
sh

ol
ds

 o
n 

P(
w

3|w
1)

higher P(w3|w1) ✓ X



Summary of Results

Recent vector-space representations are good at 
capturing overall associations given very large 
corpora.

But cannot predict aspects of human semantic 
processing -- when the observed patterns do not 
obey the constraints of vector-spaces.
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Consider representations that more directly 
capture word-pair probabilities.



Learn, Represent, and Understand

Word learning
● General vs language-specific mechanisms.
● Innate/learned biases.

Word representations
● The appropriate representations.

Understanding mental states 
● Interaction with other people.
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Can causal structure of interactions help 
models understand beliefs?



Understanding Mental States

40



Correctly Answering Questions 
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Require reasoning (not simply memorizing).  

Evaluate this capacity using Facebook bAbi 
dataset. [Weston et al., 2016]

Mary got the milk there. 
John moved to the bedroom. 
Sandra went back to the kitchen. 
Mary travelled to the hallway. 

Q: Where is the milk? A: hallway



End-to-End Memory Network

The best model fails at only 4 out of 20 bAbi tasks.

42

Explicit 
memory

Attention 
mechanism

[Sukhbaatar et al., 2015]



Reasoning about Actions & Beliefs
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Sd

Does memory network succeed in such tasks?

Need to reason 
about others’ 
beliefs & actions

False-belief or 
Sally-Anne Task

[Baron-Cohen et al., 1985]



Belief → Action and  Action→ Belief
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True Belief
Sally believes the milk is in the pantry.
Anne moved the milk to the fridge.
Q: Where did Sally search for the milk?
A: Fridge.

False Belief
Sally believes the milk is in the pantry.
Sally exited the kitchen.
Anne moved the milk to the fridge.
Sally entered the kitchen.
Q: Where did Sally search for the milk?
A: Pantry.

Sally placed the milk in the pantry.
Sally exited the kitchen.
Anne moved the milk to the fridge.
Sally entered the kitchen.
Q: Where does Sally believe the milk is?
A: Pantry.

Sally placed the milk in the pantry.
Anne moved the milk to the fridge.
Q: Where does Sally believe the milk is?
A: Fridge.

True Belief

False Belief



 Action→ Belief → Action
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True Belief

False Belief Sally placed the milk in the pantry.
Sally exited the kitchen.
Anne moved the milk to the fridge.
Sally entered the kitchen.
Q: Where did Sally search for the milk?
A: Pantry.

Sally placed the milk in the pantry.
Anne moved the milk to the fridge.
Q: Where did Sally search for the milk?
A: Fridge.

Sally-Anne or False-belief Task



Evaluating the Memory Network

Train the model on various conditions:

● B→ A
● A→ B
● A→ B→ A
● A→ B + B→ A (transitive inference)
● A→ B + B→ A + A→ B→ A

Test the model: 

● A→ B→ A (Sally-Anne task)
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[Grant, Nematzadeh, & Griffiths, submitted]

✓

Performs ok when the 
training & test has the 
same structure.



Modeling Participants’ Beliefs

Extend the model with:
● separate memories for Sally, Anne & observer,
● ability to attend to each memory.

Performance increases in all tasks; significantly 
when trained on A→ B + B→ A + A→ B→ A.
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Need to model each participant’s mental state 
to correctly answer questions.



Learn, Represent, and Understand

Word learning
● General vs language-specific mechanisms.
● Innate/learned biases.

Word representations
● The appropriate representations.

Understanding mental states 
● Interaction with other people.
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Future Directions 
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How do we learn a language?
How can this inform AI systems?



Deep Representations vs. Humans

Deep nets are good at representation learning.

Typicality ratings. [Lake et al., 2015]

Similarity judgements. [Peterson et al., 2016]
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Do deep representations replicate human 
language performance?



Deep Representations of Language

Predicting a formal language:
● context-free [Wiles and Elman, 1995]

● context-sensitive [Gers and Schmidhuber, 2001]

Modeling compositionality.
● Representations for roles (in addition to words).
● AB = Axr1 + Bxr2 [Smolensky, 2006]

Representations in Seq2Seq models:
● capturing syntax and semantics.
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Attention in Children & Computers
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Children only attend to aspects of environment.
● Helps learning.
● Reduces complexity.

Recent neural nets also use attention.
● Helps learning.
● Increases complexity.



Attention in Children & Computers
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How similar is attention in neural nets & children?

Compare neural attention mechanisms with 
eye-tracking data.

Can attention in neural models simplify learning?



Language in People and Computers

Human language learning is a complex process.

AI systems need to address similar challenges to 
those people face in language learning.

A multi-disciplinary study of language benefits 
both AI and cognitive science.
● Comp Sci informs Cog Sci.
● Cog Sci informs Comp Sci.
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Other Projects & Acknowledgments 
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Desirable difficulties in learning. 
[Nematzadeh et al, 2012, 2013, submitted]

Individual differences in word 
learning. [Nematzadeh et al, 2011, 2012, 2014]

Learning multiword expressions. 
[Fazly et al, 2009; Nematzadeh et al, 2013]

Learning, organizing, and 
searching semantic knowledge. 
[Nematzadeh et al 2015, 2016; Miscevic et al, submitted]
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