• Home
  • Papers & Artifacts
  • Talks
  • Service
    2024
  • Evaluating Numerical Reasoning in Text-to-Image Models
    Ivana Kajić, Olivia Wiles, Isabela Albuquerque, Matthias Bauer, Su Wang, Jordi Pont-Tuset, Aida Nematzadeh
    NeurIPS 2024 [GeckoNum Benchmark]
  • Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings
    Olivia Wiles*, Chuhan Zhang*, Isabela Albuquerque*, Ivana Kajić, Su Wang, Emanuele Bugliarello, Yasumasa Onoe, Chris Knutsen, Cyrus Rashtchian, Jordi Pont-Tuset, Aida Nematzadeh (*: equal contribution)
    arXiv 2024 [Gecko Benchmark]
  • Imagen 3
    Imagen-Team-Google
    arXiv 2024

    2023
  • Pragmatics in Grounded Language Learning: Phenomena, Tasks, and Modeling Approaches
    D. Fried, N. Tomlin, J. Hu, R. Patel, A. Nematzadeh
    Findings of EMNLP 2023
  • Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining
    E. Bugliarello, A. Nematzadeh*, LA Hendricks* (*: equal contribution)
    EMNLP 2023
  • Measuring Progress in Fine-grained Vision-and-Language Understanding
    E. Bugliarello, L. Sartran, A. Agrawal, LA Hendricks*, A. Nematzadeh* (*: equal contribution)
    ACL 2023
  • MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting
    O. Mañas, P. Rodriguez Lopez, S. Ahmadi, A. Nematzadeh, Y. Goyal, A. Agrawal
    EACL 2023
  • Reassessing Evaluation Practices in Visual Question Answering: A Case Study on Out-of-Distribution Generalization
    A. Agrawal, I. Kajic, E. Bugliarello, E. Davoodi, A. Gergely, P. Blunsom, A. Nematzadeh
    Findings of EACL 2023 [Extended Tech Report; see for the summary of contributions]
  • Evaluating Visual Number Discrimination in Deep Neural Networks
    I. Kajić and A. Nematzadeh
    CogSci 2023

    2022
  • Flamingo: a Visual Language Model for Few-Shot Learning
    JB Alayrac, J. Donahue, P. Luc, A. Miech et al.
    NeurIPS 2022
  • The Emergence of Gender Associations in Child Language Development
    B. Prystawski, E. Grant, A. Nematzadeh, S. W. S. Lee, S. Stevenson, Y. Xu
    Cognitive Science 2022
  • A Systematic Investigation of Commonsense Knowledge in Large Language Models
    X. L. Li, A. Kuncoro, J. Hoffmann, C. de Masson d’Autume, P. Blunsom, A. Nematzadeh
    EMNLP 2022

    2021
  • Scaling Language Models: Methods, Analysis & Insights from Training Gopher
    J. W. Rae et al.
    arXiv 2021
  • Probing Image-Language Transformers for Verb Understanding
    LA Hendricks and A. Nematzadeh
    Findings of ACL 2021 [SVOProbes dataset]
  • Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers
    LA Hendricks, J. Mellor, R. Schneider, JB Alayrac, A. Nematzadeh
    TACL 2021 [summary] [pretrained models]

    2020
  • Competition in Cross-situational Word Learning: A Computational Study
    A. Nematzadeh, Z. Shekarchi, T. L. Griffiths, S. Stevenson
    arXiv 2020 [CogSci 2021 Abstract]
  • Learning to Segment Actions from Observation and Narration
    D. Fried, JB Alayrac, P. Blunsom, C. Dyer, S. Clark, A. Nematzadeh
    ACL 2020 [summary]
  • Tracing the Emergence of Gendered Language in Childhood
    B. Prystawski, E. Grant, A. Nematzadeh, S. WS Lee, S. Stevenson, Y. Xu
    CogSci 2020
  • On Memory in Human and Artificial Language Processing Systems
    A. Nematzadeh*, S. Ruder*, D. Yogatama* (*: equal contribution)
    Bridging AI and Cognitive Science Workshop at ICLR 2020
  • Visual Grounding in Video for Unsupervised Word Translation
    G. A. Sigurdsson, JB Alayrac, A. Nematzadeh, L. Smaira, M. Malinowski, J. Carreira, P. Blunsom, A. Zisserman
    CVPR 2020 [summary]

    2018
  • Evaluating Theory of Mind in Question Answering
    A. Nematzadeh, K. Burns, E. Grant, A. Gopnik, and T. Griffiths
    EMNLP 2018 (oral presentation) [video] [New Scientist]
  • Exploiting Attention to Reveal Shortcomings in Memory Models
    K. Burns, A. Nematzadeh, E. Grant, A. Gopnik, and T. Griffiths
    BlackboxNLP workshop at EMNLP 2018 (poster presentation)
  • Distributed Shared Memory for Machine Learning
    A. Tootoonchian, A. Panda, A. Nematzadeh, and S. Shenker
    SysML 2018
  • Learning Hierarchical Visual Representations in Deep Neural Networks Using Hierarchical Linguistic Labels
    J. Peterson, P. Soulos, A. Nematzadeh, and T. Griffiths
    CogSci 2018 (poster presentation)
  • Predicting and Explaining Human Semantic Search in a Cognitive Model
    F. Miscevic, A. Nematzadeh, and S. Stevenson
    CMCL 2018 (oral presentation)

    2017
  • Calculating Probabilities Simplifies Word Learning
    A. Nematzadeh, B. Beekhuizen, S. Huang, and S. Stevenson
    CogSci 2017 (oral presentation)
  • Evaluating Vector-Space Models of Word Representation
    A. Nematzadeh, S. Meylan, and T. Griffiths
    CogSci 2017 (oral presentation)
  • How Can Memory-Augmented Neural Networks Pass a False-Belief Task?
    E. Grant, A. Nematzadeh, and T. Griffiths
    CogSci 2017 (oral presentation)

    2016
  • Simple Search Algorithms on Semantic Networks Learned from Language Use
    A. Nematzadeh, F. Miscevic and S. Stevenson
    CogSci 2016 (poster presentation)
  • The Interaction of Memory and Attention in Novel Word Generalization: A Computational Investigation
    E. Grant, A. Nematzadeh, and S. Stevenson
    CogSci 2016 (oral presentation)[code]

    2015
  • Computational Modeling of Word Learning: The Role of Cognitive Processes
    A. Nematzadeh
    Ph.D. thesis.
  • A Computational Cognitive Model of Novel Word Generalization
    A. Nematzadeh, E. Grant, and S. Stevenson
    EMNLP 2015 (oral presentation) [code] [video] [bibtex]

    2014
  • A Cognitive Model of Semantic Network Learning

    A. Nematzadeh, A. Fazly, and S. Stevenson
    EMNLP 2014 (oral presentation) [code] [video] [bibtex]

  • Structural Differences in the Semantic Networks of Simulated Word Learners
    A. Nematzadeh, A. Fazly, and S. Stevenson
    CogSci 2014 (oral presentation) [code] [bibtex]

    2013
  • Desirable Difficulty in Learning: A Computational Investigation
    A. Nematzadeh, A. Fazly, and S. Stevenson
    CogSci 2013 (oral presentation). [bibtex] [CoLa blog]
  • Word Learning in the Wild: What Natural Data Can Tell Us
    B. Beekhuizen, A. Fazly, A. Nematzadeh, and S. Stevenson
    CogSci 2013 (poster presentation). [bibtex]
  • Child Acquisition of Multiword Verbs: A Computational Investigation
    A. Nematzadeh, A. Fazly, and S. Stevenson
    in T. Poibeau, A. Villavicencio, A. Korhonen and A. Alishahi (eds). Cognitive Aspects of Computational Language Acquisition, Springer, 2013.

    pre 2013
  • A Computational Model of Memory, Attention, and Word Learning
    A. Nematzadeh, A. Fazly, and S. Stevenson
    CMCL 2012 (oral presentation). [bibtex]
  • Interaction of Word Learning and Semantic Category Formation in Late Talking
    A. Nematzadeh, A. Fazly, and S. Stevenson
    CogSci 2012 (poster presentation). [bibtex]
  • A Computational Study of Late Talking in Word-Meaning Acquisition
    A. Nematzadeh, A. Fazly, and S. Stevenson
    CogSci 2011 (poster presentation). [poster] [bibtex]
  • The Role of Statistical Evidence in Child Acquisition of Multiword Verbs
    A. Nematzadeh
    Master's paper. Department of Computer Science, University of Toronto. January 2010 [bibtex]
  • Acquiring Multiword Verbs: The Role of Statistical Evidence
    A. Fazly, A. Nematzadeh, and S. Stevenson
    CogSci 2009 (oral presentation). [bibtex]

Source Code

Based on Bootstrap and Bootswatch. Icons from Font Awesome. Web fonts from Google.